miércoles, 27 de julio de 2016

TRANSFORMADORES



Se denomina transformador a un dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo la potencia. La potencia que ingresa al equipo, en el caso de un transformador ideal (esto es, sin pérdidas), es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño y tamaño, entre otros factores.
El transformador es un dispositivo que convierte la energía eléctrica alterna de un cierto nivel de tensión, en energía alterna de otro nivel de tensión, basándose en el fenómeno de la inducción electromagnética. Está constituido por dos bobinas de material conductor, devanadas sobre un núcleo cerrado de material ferromagnético, pero aisladas entre sí eléctrica mente. La única conexión entre las bobinas la constituye el flujo magnético común que se establece en el núcleo. El núcleo, generalmente, es fabricado bien sea de hierro o de láminas apiladas de acero eléctrico, aleación apropiada para optimizar el flujo magnético. Las bobinas o devanados se denominan primario* y secundario**  según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado "terciario", de menor tensión que el secundario.
*Bobina primaria o “primario” a aquella que recibe el voltaje de entrada
**Bobina secundaria o “secundario” a aquella que entrega el voltaje transformado

La Bobina primaria recibe un voltaje alterno que hará circular, por ella, una corriente alterna.

Esta corriente inducirá un flujo magnético en el núcleo de hierro. Como el bobinado secundario está arrollado sobre el mismo núcleo de hierro, el flujo magnético circulará a través de las espiras de éste. Al haber un flujo magnético que atraviesa las espiras del “Secundario”, se generará por el alambre del secundario un voltaje. En este bobinado secundario habría una corriente si hay una carga conectada (el secundario conectado por ejemplo a un resistor)
La razón de transformación del voltaje entre el bobinado “Primario” y el “Secundario” depende del número de vueltas que tenga cada uno. Si el número de vueltas del secundario es el triple del primario. En el secundario habrá el triple de voltaje. La fórmula:

Entonces: Vs = Ns x Vp / Np

Componentes de los transformadores eléctricos
Los transformadores están compuestos de diferentes elementos. Los componentes básicos son:


  • Núcleo: Este elemento está constituido por chapas de acero al silicio aisladas entre ellas. El núcleo de los transformadores está compuesto por las columnas, que es la parte donde se montan los devanados, y las culatas, que es la parte donde se realiza la unión entre las columnas. El núcleo se utiliza para conducir el flujo magnético, ya que es un gran conductor magnético.
  • Devanados: El devanado es un hilo de cobre enrollado a través del núcleo en uno de sus extremos y recubiertos por una capa aislante, que suele ser barniz. Está compuesto por dos bobinas, la primaria y la secundaria. La relación de vueltas del hilo de cobre entre el primario y el secundario nos indicará la relación de transformación. El nombre de primario y secundario es totalmente simbólico. Por definición allá donde apliquemos la tensión de entrada será el primario y donde obtengamos la tensión de salida será el secundario.
A continuación encontraras un vídeo con el cual podrás entender mejor como funcionan los transformadores: 






lunes, 30 de mayo de 2016

Sanpchat

¿Qué es?
Snapchat es una aplicación móvil dedicada al envío de archivos, los cuales "desaparecen" del dispositivo del destinatario entre uno y diez segundos después de haberlos visto. Fue desarrollada por Artur Celeste, Bobby Murphy y Reggie Brown, estudiantes de la Universidad de Stanford, en Estados Unidos, en 2010. Son enviados a través de mensajes privados o como "en vivo" o "discover", la aplicación se encuentra disponible para iPhone y Android, en ambos de forma gratuita y sólo para mayores de 12 años.
Según Snapchat, en mayo de 2013 los usuarios mandaban 14000 millones de fotos y vídeos diarios, mientras que las historias eran reproducidas unas 500 millones de veces al día. A finales de agosto de ese mismo año, la empresa estaba valorada en 10.000 millones de dólares estadounidenses.

Actualmente Snapchat se ha ubicado en las aplicaciones más descargadas a nivel mundial junto a Facebook, Whatsapp, Twitter, YouTube entre otras, y cada vez más surgen usuarios que se hacen llamar SnapChatters por su contenido y por la cantidad de personas que lo siguen tal como Instagram o YouTube.
Historia
Snapchat fue creado por Evan Spiegel como proyecto para una de sus clases de Stanford, donde este último era estudiante de último curso de diseño de productos. Comenzó con el nombre de "Picaboo" para publicar fotos y destruirlas rápidamente para que nadie más las viera. Más tarde decidieron contar con Murphy para codificar la aplicación. Cuando Spiegel mostró, en abril de 2011, dicha aplicación como proyecto final para su clase de diseño de productos, sus compañeros se opusieron a la idea de las fotos no permanentes.
En mayo de 2012, se mandaban 25 imágenes por segundo y para noviembre de ese mismo año ya se habían compartido más de un millón de fotografías a través de la aplicación IOS de Snapchat. Dicha aplicación comenzó a venderse para Android el 29 de noviembre de 2012.
En noviembre de 2013 Facebook intentó comprar Snapchat por una cantidad de 3000 millones de dólares, número superior a los ingresos generados por la aplicación en ese momento. Sin embargo, sus creadores veían un gran potencial en ella por lo que decidieron rechazar esta oferta, la cual curiosamente volvió a repetirse tiempo después y nuevamente fue rechazada.

Funcionamiento 

Snapchat funciona de forma similar a una App de mensajería instantánea, permitiendo añadir contactos y enviarles mensajes en forma de fotos o vídeos. La principal diferencia es que tú seleccionas el tiempo que el receptor podrá ver ese mensaje (de 1 a 10 segundos) antes de que desaparezca.
Es decir, mandas tu foto, la editas si quieres (puedes ponerle algún filtro, añadirle un pequeño texto o dibujar encima) y la mandas a quien quieras especificando el tiempo que podrá acceder a ella. Después al usuario se le notifica que tiene un mensaje y puede verlo presionando sobre el mensaje.
Con la nueva actualización antes de hacerte un selfie puedes presionar tu cara y encontrar unos nuevos filtros en movimiento.
La aplicación del fantasmita también tiene la opción de vídeo llamadas. A diferencia de las demás plataformas, su manera de activar la opción es totalmente distinta, ya que en lugar de buscar a un contacto y llamar, aquí deberás estar tanto tú como tu amigo en el área privada de la mensajería y presionar el botón que, en este caso, se volverá azul al mismo tiempo


Algunos filtros para las fotos de snapchat 

Efectos para los vídeos

Usos
USO PERSONAL
Este uso principalmente se basa en compartir en tu historia tus experiencias personales con tus seguidores, así como enviar fotos o vídeos a un único usuario con el fin de mostrarle los momentos que vive en su día a día.
Sin duda Snapchat es la aplicación perfecta para compartir aquellos instantes que no consideras tan importantes como para subirlos a cualquier otra red social, pero que forman parte de tu vida igualmente; esa es la gracia de esta aplicación. Además, los contenidos que subes son frescos y dinámicos, porque lo que buscas es la inmediatez y esa frescura, más que la calidad del contenido

USO PARA NEGOCIOS
Aunque todavía muchas empresas o particulares no utilizan dicha aplicación, grandes firmas como McDonald's o Heineken se han lanzado al uso de esta plataforma, mediante la cual comparten sus campañas publicitarias con el fin de informar a los usuarios de los nuevos productos o promociones.






domingo, 6 de marzo de 2016

Fuentes típicas de producción de electricidad

¿Que es la Electricidad?

La electricidad se puede definir como una forma de energía originada por el movimiento ordenado de electrones. Otros tipos de energía son la mecánica, calorífica, solar, etc.

Dependiendo de la energía que se quiera transformar en electricidad, sera necesario aplicar una determinada acción. Se podrá disponer de electricidad por los siguientes procedimientos.


Electricidad por Frotamiento

Las primeras observaciones sobre fenómenos eléctricos se realizaron ya en la antigua Grecia, cuando el filósofo Tales de Mileto (640-546 a.c.) comprobó que, al frotar barras de ámbar contra pieles curtidas, se producía en ellas características de atracción que antes no poseían.
Es el mismo experimento que ahora se puede hacer frotando una barra de plástico con un paño; acercándola luego a pequeños pedazos de papel, los atrae hacia sí, como es característico en los cuerpos electrizados.
Todos estamos familiarizados con los efectos de la electricidad estática, incluso algunas personas son más susceptibles que otras a su influencia.
Ciertos usuarios de automóviles sienten sus efectos al cerrar con la llave (un objeto metálico puntiagudo) o al tocar la chapa del coche.
Creamos electricidad estática, cuando frotamos un bolígrafo con nuestra ropa.
A continuación, comprobamos que el bolígrafo atrae pequeños trozos de papel.
Lo mismo podemos decir cuando frotamos vidrio con seda o ámbar con lana.
Para explicar cómo se origina la electricidad estática, hemos de considerar que la materia está hecha de átomos, y los átomos de partículas cargadas, un núcleo rodeado de una nube de electrones. Normalmente, la materia es neutra, tiene el mismo número de cargas positivas y negativas.
Algunos átomos tienen más facilidad para perder sus electrones que otros. Si un material tiende a perder algunos de sus electrones cuando entra en contacto con otro, se dice que es más positivo en la serie tribo - eléctrica.
Si un material tiende a capturar electrones cuando entra en contacto con otro material, dicho material es más negativo en la serie tribo - eléctrica.
Estos son algunos ejemplos de materiales ordenados de más positivo a más negativo:
Piel de conejo, vidrio, pelo humano, nylon, lana, seda, papel, algodón, madera, ámbar, polyester, poliuretano, vinilo (PVC), teflón.
El vidrio frotado con seda provoca una separación de las cargas porque ambos materiales ocupan posiciones distintas en la serie tribo - eléctrica, lo mismo se puede decir del ámbar y del vidrio.
Cuando dos materiales no conductores entran en contacto uno de los materiales puede capturar electrones del otro material. La cantidad de carga depende de la naturaleza de los materiales (de su separación en la serie tribo - eléctrica), y del área de la superficie que entra en contacto.
Otro de los factores que intervienen es el estado de las superficies, si son lisas o rugosas (la superficie de contacto es pequeña). La humedad o impurezas que contengan las superficies proporcionan un camino para que se recombinen las cargas.
La presencia de impurezas en el aire tiene el mismo efecto que la humedad.
Habremos observado que frotando el bolígrafo con nuestra ropa atrae a trocitos de papeles.
En las experiencias de aula, se frotan diversos materiales, vidrio con seda, cuero, etc...
Se emplean bolitas de sauco electrizadas para mostrar las dos clases de cargas y sus interacciones.
De estos experimentos se concluye que:
La materia contiene dos tipos de cargas eléctricas denominadas positivas y negativas. Los objetos no cargados poseen cantidades iguales de cada tipo de carga. Cuando un cuerpo se frota la carga se transfiere de un cuerpo al otro, uno de los cuerpos adquiere un exceso de carga positiva y el otro, un exceso de carga negativa. En cualquier proceso que ocurra en un sistema aislado, la carga total o neta no cambia.
Los objetos cargados con cargas del mismo signo, se repelen.
Los objetos cargados con cargas de distinto signo, se atraen.
Si antes de empezar las experiencias, se aproximan una barra de ebonita y a otra de vidrio, se comprobará que no existe electrificación ninguna, pues no hay ni atracción ni repulsión. De esta manera, se llega a la conclusión de que la electrización se produce por frotamiento y de que existe algún agente común que no se comporta de igual forma en ambos materiales.
Efectivamente, un tipo de partículas llamadas electrones abandonan en unos casos la barra, por acción del frotamiento, y otras veces abandona el paño para pasar a la barra.
El exceso de electrones da lugar a cargas negativas, y su falta a cargas positivas.
Los electrones son idénticos para todas las sustancias (los de cobre son iguales que los del vidrio o la madera), siendo estas, las partículas más importantes de las que se compone la materia, ya que disponen de carga y movilidad para desplazarse por las sustancias. La diferencia entre dos materiales vendrá dada, entre otras cosas, por la cantidad y movilidad de los electrones que la componen.
A título de curiosidad, comentar que la masa de un electrón es de:
0'0000000000000000000000000000009106 Kg.
Los conceptos de carga y movilidad son esenciales en el estudio de la electricidad, ya que, sin ellos, no podría existir la corriente eléctrica.



Electricidad por Acción Química

Dispositivo que convierte la energía química en eléctrica. Todas las pilas consisten en un electrolito (que puede ser líquido, sólido o en pasta), un electrodo positivo y un electrodo negativo. El electrolito es un conductor iónico; uno de los electrodos produce electrones y el otro electrodo los recibe. Al conectar los electrodos al circuito que hay que alimentar, se produce una corriente eléctrica. Véase Electroquímica.
Las pilas en las que el producto químico no puede volver a su forma original una vez que la energía química se ha transformado en energía eléctrica (es decir, cuando las pilas se han descargado), se llaman pilas primarias o voltaicas. Las pilas secundarias o acumuladores son aquellas pilas reversibles en las que el producto químico que al reaccionar en los electrodos produce energía eléctrica, puede ser reconstituido pasando una corriente eléctrica a través de él en sentido opuesto a la operación normal de la pila.
Entre los extremos de los metales, fuera del electrolito, se genera una diferencia de potencial, o voltaje, que puede dar lugar a una corriente eléctrica. En la pila de la figura 3 el zinc adquiere carga negativa, mientras que el cobre adquiere cargas positivas. Al zinc se le llama cátodo y el cobre recibe el nombre de ánodo. Así se tiene una fuente de electricidad distinta a la generada por fricción. Con este medio químico para obtener electricidad se abrieron nuevas posibilidades de aplicación práctica y experimental.
La explicación de las reacciones químicas que ocurren en la pila o celda voltaica se dio muchos años después, ya que en la época de Volta la química apenas empezaba a desarrollarse como ciencia moderna. Solamente diremos que, por un lado, el zinc adquiere un exceso de electrones, mientras que por el otro, el ácido con el cobre da lugar a cargas eléctricas positivas. Al unir el cobre con el zinc por medio de un alambre conductor, los electrones del zinc se mueven a través del alambre, atraídos por las cargas del cobre y al llegar a ellas se les unen formando hidrógeno.


Electricidad por Acción de la Luz

A medida que la luz solar se hace más intensa, el voltaje que se genera entre las dos capas de la célula fotovoltaica aumenta.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
¿Cómo funciona una célula fotovoltaica?
Para ver el gráfico seleccione la opción "Descargar" del menú superior
En ausencia de luz, el sistema no genera energía.
Cuando la luz solar incide sobre la placa, la célula empieza a funcionar. Los fotones de la luz solar interaccionan con los electrones disponibles e incrementan su nivel de energía.


Electricidad Térmica por Acción del Calor

Central de generación térmica:

Es el tipo de central donde se usa una turbina accionada por vapor de agua inyectado a presión para mover el eje de los generadores eléctricos. Se puede producir desde los 5 hasta los 5000 kwatts.
Las centrales térmicas convencionales y las térmicas nucleares utilizan la energía contenida en el vapor a presión. El ejemplo más sencillo consiste en conectar una tetera llena de agua hirviendo a una rueda de paletas, enlazada a su vez a un generador. El chorro de vapor procedente de la tetera mueve las paletas, y estas, el rotor.
Podemos conseguir vapor de muchas maneras: quemando carbón, petróleo, gas o residuos urbanos, o bien aprovechando la gran cantidad de calor que generan las reacciones de fisión nuclear. Incluso se puede producir vapor concentrando la energía del sol.
El proceso seguido en todas las centrales térmicas (convencionales o nucleares) tiene cuatro partes principales:
1. Generador de calor (puede ser una caldera para quemar carbón, fuel, gas, biogás, biomasa o residuos urbanos, o bien un reactor nuclear).
2. Circuito cerrado por donde circula el fluido que porta la energía cinética necesaria (agua en fase líquida y en fase de vapor). El generador de vapor tiene una gran superficie de contacto para facilitar la transferencia de calor de la caldera. (En las centrales de gas de ciclo combinado, el fluido es el propio gas en combustión).
3. Condensador o circuito de enfriamiento. Convierte el vapor "muerto" de baja densidad en agua líquida de alta densidad, apta para ser convertida de nuevo en vapor "vivo". El calor residual del vapor "muerto" se transfiere a otro medio (generalmente un río o un embalse).
4. La turbina convierte la energía cinética del vapor "vivo" en movimiento rotatorio. Las ruedas de paletas se disponen una tras otra, con diferentes configuraciones, para aprovechar toda la energía contenida en el vapor a presión a medida que se expande y pierde fuerza. El generador convierte el giro en corriente eléctrica, gracias al proceso de inducción electromagnética.

 

Electricidad por Magnetismo

En 1819, el físico danés Hans Christian Oersted llevó a cabo un importante descubrimiento al observar que una aguja magnética podía ser desviada por una corriente eléctrica. Este descubrimiento, que mostraba una conexión entre la electricidad y el magnetismo, fue desarrollado por el científico francés André Marie Ampère, que estudió las fuerzas entre cables por los que circulan corrientes eléctricas, y por el físico francés Dominique François Arago, que magnetizó un pedazo de hierro colocándolo cerca de un cable recorrido por una corriente. En 1831, el científico británico Michael Faraday descubrió que el movimiento de un imán en las proximidades de un cable induce en éste una corriente eléctrica; este efecto era inverso al hallado por Oersted. Así, Oersted demostró que una corriente eléctrica crea un campo magnético, mientras que Faraday demostró que puede emplearse un campo magnético para crear una corriente eléctrica. La unificación plena de las teorías de la electricidad y el magnetismo se debió al físico británico James Clerk Maxwell, que predijo la existencia de ondas electromagnéticas e identificó la luz como un fenómeno electromagnético (véase Física).
James Clerk Maxwell Conocido como uno de los científicos más destacados del siglo XIX, James Clerk Maxwell desarrolló una teoría matemática que relaciona las propiedades de los campos eléctricos y magnéticos. Los trabajos de Maxwell lo llevaron a predecir la existencia de las ondas electromagnéticas, e identificó la luz como un fenómeno electromagnético. Sus investigaciones contribuyeron a algunos de los descubrimientos más importantes en el campo de la física durante el siglo XX, incluidas la teoría de la relatividad especial de Einstein y la teoría cuántica.Hulton Deutsch
Los estudios posteriores sobre el magnetismo se centraron cada vez más en la comprensión del origen atómico y molecular de las propiedades magnéticas de la materia. En 1905, el físico francés Paul Langevin desarrolló una teoría sobre la variación con la temperatura de las propiedades magnéticas de las sustancias paramagnéticas (ver más adelante), basada en la estructura atómica de la materia. Esta teoría es uno de los primeros ejemplos de la descripción de propiedades macroscópicas a partir de las propiedades de los electrones y los átomos. Posteriormente, la teoría de Langevin fue ampliada por el físico francés Pierre Ernst Weiss, que postuló la existencia de un campo magnético interno, molecular, en los materiales como el hierro. Este concepto, combinado con la teoría de Langevin, sirvió para explicar las propiedades de los materiales fuertemente magnéticos como la piedra imán.
Campos magnéticos y corrientes En 1813, Hans Christian Oersted predijo que se hallaría una conexión entre la electricidad y el magnetismo. En 1819 colocó una brújula cerca de un hilo recorrido por una corriente y observó que la aguja magnética se desviaba. Con ello demostró que las corrientes eléctricas producen campos magnéticos. Aquí vemos cómo las líneas del campo magnético rodean el cable por el que fluye la corriente.© Microsoft Corporation. Reservados todos los derechos.
Después de que Weiss presentara su teoría, las propiedades magnéticas se estudiaron de forma cada vez más detallada. La teoría del físico danés Niels Bohr sobre la estructura atómica, por ejemplo, hizo que se comprendiera la tabla periódica y mostró por qué el magnetismo aparece en los elementos de transición, como el hierro, en los lantánidos o en compuestos que incluyen estos elementos. Los físicos estadounidenses Samuel Abraham Goudsmit y George Eugene Uhlenbeck demostraron en 1925 que los electrones tienen espín y se comportan como pequeños imanes con un ‘momento magnético’ definido. El momento magnético de un objeto es una magnitud vectorial (véase Vector) que expresa la intensidad y orientación del campo magnético del objeto. El físico alemán Werner Heisenberg dio una explicación detallada del campo molecular de Weiss en 1927, basada en la recientemente desarrollada mecánica cuántica (ver Teoría cuántica). Más tarde, otros científicos predijeron muchas estructuras atómicas del momento magnético más complejas, con diferentes propiedades magnéticas.
4 EL CAMPO MAGNÉTICO
Una barra imantada o un cable que transporta corriente pueden influir en otros materiales magnéticos sin tocarlos físicamente porque los objetos magnéticos producen un ‘campo magnético’. Los campos magnéticos suelen representarse mediante ‘líneas de campo magnético’ o ‘líneas de fuerza’. En cualquier punto, la dirección del campo magnético es igual a la dirección de las líneas de fuerza, y la intensidad del campo es inversamente proporcional al espacio entre las líneas. En el caso de una barra imantada, las líneas de fuerza salen de un extremo y se curvan para llegar al otro extremo; estas líneas pueden considerarse como bucles cerrados, con una parte del bucle dentro del imán y otra fuera. En los extremos del imán, donde las líneas de fuerza están más próximas, el campo magnético es más intenso; en los lados del imán, donde las líneas de fuerza están más separadas, el campo magnético es más débil. Según su forma y su fuerza magnética, los distintos tipos de imán producen diferentes esquemas de líneas de fuerza. La estructura de las líneas de fuerza creadas por un imán o por cualquier objeto que genere un campo magnético puede visualizarse utilizando una brújula o limaduras de hierro. Los imanes tienden a orientarse siguiendo las líneas de campo magnético. Por tanto, una brújula, que es un pequeño imán que puede rotar libremente, se orientará en la dirección de las líneas. Marcando la dirección que señala la brújula al colocarla en diferentes puntos alrededor de la fuente del campo magnético, puede deducirse el esquema de líneas de fuerza. Igualmente, si se agitan limaduras de hierro sobre una hoja de papel o un plástico por encima de un objeto que crea un campo magnético, las limaduras se orientan siguiendo las líneas de fuerza y permiten así visualizar su estructura.
Los campos magnéticos influyen sobre los materiales magnéticos y sobre las partículas cargadas en movimiento. En términos generales, cuando una partícula cargada se desplaza a través de un campo magnético, experimenta una fuerza que forma ángulos rectos con la velocidad de la partícula y con la dirección del campo. Como la fuerza siempre es perpendicular a la velocidad, las partículas se mueven en trayectorias curvas. Los campos magnéticos se emplean para controlar las trayectorias de partículas cargadas en dispositivos como los aceleradores de partículas o los espectrógrafos de masas.
5 TIPOS DE MATERIALES MAGNÉTICOS
Paramagnetismo El oxígeno líquido queda atrapado en el campo magnético de un electroimán, porque el oxígeno (O2) es paramagnético. El oxígeno tiene dos electrones desapareados cuyos momentos magnéticos se alinean con el campo magnético externo. Cuando esto ocurre, las moléculas de O2 se comportan como imanes minúsculos y quedan atrapadas entre los polos del electroimán.Phototake NYC/Yoav Levy
Las propiedades magnéticas de los materiales se clasifican siguiendo distintos criterios.
Una de las clasificaciones de los materiales magnéticos —que los divide en diamagnéticos, paramagnéticos y ferromagnéticos— se basa en la reacción del material ante un campo magnético. Cuando se coloca un material diamagnético en un campo magnético, se induce en él un momento magnético de sentido opuesto al campo. En la actualidad se sabe que esta propiedad se debe a las corrientes eléctricas inducidas en los átomos y moléculas individuales. Estas corrientes producen momentos magnéticos opuestos al campo aplicado. Muchos materiales son diamagnéticos; los que presentan un diamagnetismo más intenso son el bismuto metálico y las moléculas orgánicas que, como el benceno, tienen una estructura cíclica que permite que las corrientes eléctricas se establezcan con facilidad.
El comportamiento paramagnético se produce cuando el campo magnético aplicado alinea todos los momentos magnéticos ya existentes en los átomos o moléculas individuales que componen el material. Esto produce un momento magnético global que se suma al campo magnético. Los materiales paramagnéticos suelen contener elementos de transición o lantánidos con electrones desapareados. El paramagnetismo en sustancias no metálicas suele caracterizarse por una dependencia de la temperatura: la intensidad del momento magnético inducido varía inversamente con la temperatura. Esto se debe a que al ir aumentando la temperatura, cada vez resulta más difícil alinear los momentos magnéticos de los átomos individuales en la dirección del campo magnético.
Las sustancias ferromagnéticas son las que, como el hierro, mantienen un momento magnético incluso cuando el campo magnético externo se hace nulo. Este efecto se debe a una fuerte interacción entre los momentos magnéticos de los átomos o electrones individuales de la sustancia magnética, que los hace alinearse de forma paralela entre sí. En circunstancias normales, los materiales ferromagnéticos están divididos en regiones llamadas ‘dominios’; en cada dominio, los momentos magnéticos atómicos están alineados en paralelo. Los momentos de dominios diferentes no apuntan necesariamente en la misma dirección. Aunque un trozo de hierro normal puede no tener un momento magnético total, puede inducirse su magnetización colocándolo en un campo magnético, que alinea los momentos de todos los dominios. La energía empleada en la reorientación de los dominios desde el estado magnetizado hasta el estado desmagnetizado se manifiesta en un desfase de la respuesta al campo magnético aplicado, conocido como ‘histéresis’.
Un material ferromagnético acaba perdiendo sus propiedades magnéticas cuando se calienta. Esta pérdida es completa por encima de una temperatura conocida como punto de Curie, llamada así en honor del físico francés Pierre Curie, que descubrió el fenómeno en 1895. (El punto de Curie del hierro metálico es de unos 770 °C).


Electricidad por Presión

Para ver el gráfico seleccione la opción "Descargar" del menú superior
En esta figura podemos observar, la presión que ejerce las corrientes de agua subterráneas, las mismas que accionan las turbinas que posteriormente generan la energía eléctrica, este mismo proceso lo utilizan en los barcos y grandes buques como energía alterna al sistema principal.
En la figura siguiente, podemos observar la presión que ejerce el agua en una represa de agua, este sistema es el más utilizado.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
En las presas se genera electricidad liberando un flujo controlado de agua a alta presión a través de un conducto forzado. El agua impulsa unas turbinas que mueven los generadores y producen así una corriente eléctrica. A continuación, esta corriente elevada de baja tensión pasa por un elevador de tensión que la transforma

















jueves, 18 de febrero de 2016

Generadores de corriente

GENERADORES DE CORRIENTE 

Generadores de corriente alterna

El generador de corriente de corriente alterna es un dispositivo que convierte la energía mecánica en energía eléctrica. El generador mas simple consta de una espiral rectangular que gira en un campo magnético uniforme.

En este vídeo podemos observar la transformación de energía que se da mediante el proceso de energía mecánica a energía eléctrica, en la cual intervienen los campos magnéticos en las espirales en donde ayuda a realizar la energía mecánica mediante un movimiento circular.
Este tiene como finalidad darle la suficiente energía a la bombilla para la producción de luz


http://www.sc.ehu.es/sbweb/fisica/elecmagnet/induccion/generador/generador.htm

Generadores de corriente continua

Los generadores de corriente continua son maquinas que producen tensión su funcionamiento se reduce siempre al principio de la bobina giratorio dentro de un campo magnético. Si una armadura gira entre dos polos magnéticos fijos, la corriente en la armadura circula en un sentido durante la mitad de cada revolución, y en el otro sentido durante la otra mitad. Para producir un flujo constante de corriente en un sentido, o corriente continua, en un aparato determinado, es necesario disponer de un medio para invertir el flujo de corriente fuera del generador una vez durante cada revolución.